Heavy Quarkonium Production at B factories

Kuang-Ta Chao

In collaboration with Y.J. Zhang, Y.Q. Ma, K. Wang, Z.G. He, Y. Fan

Department of Physics, Peking University, Beijing, China

The International Workshop on Heavy Quarkonia 2010 May 18-21, 2010

Outline

Inclusive J/ψ Production and $R_{c\bar{c}}$

Introduction

$$\Leftrightarrow e^+e^- \rightarrow J/\psi + gg$$

Exclusive Double-Charmonia $J/\psi + \chi_{cJ}$ Production

Introduction

Summary

Inclusive Charmonia Production and $R_{c\bar{c}}$

Introduction

Sexperimental data

• Belle02:
$$R_{c\bar{c}} = \frac{\sigma[e^+e^- \to J/\psi + c\bar{c} + X]}{\sigma[e^+e^- \to J/\psi + X]} = 0.59^{+0.15}_{-0.13} \pm 0.12$$

- Belle03: $R_{c\bar{c}} = 0.82 \pm 0.15 \pm 0.14$
- Belle09:

$$-\sigma[e^+e^- \to J/\psi + c\bar{c} + X] = 0.74 \pm 0.08^{+0.09}_{-0.08} \text{ pb}$$

$$-\sigma[e^+e^- \to J/\psi + X_{\mathbf{non-}c\bar{c}}] = 0.43 \pm 0.09 \pm 0.09 \text{ pb}$$

$$-\sigma[e^+e^- \to J/\psi + X] = 1.17 \pm 0.02 \pm 0.07 \text{ pb}$$

LO (in α_s) CS contributions

–
$$\sigma[e^+e^- \rightarrow J/\psi + c\bar{c}] \sim 0.1~\mathrm{pb}$$

–
$$\sigma[e^+e^- \rightarrow J/\psi + gg] \sim 0.3~\mathrm{pb}$$

• LO CS are inconsistent with data in both absolute and relative rates

> LO CO contributions

- Numerator: CO contribution to $\sigma[J/\psi + c\bar{c}]$ is only about 7% [Liu, He, Chao'04]
- Denominator:
 - $-\sigma_{\rm ex}[e^+e^- \to J/\psi + X_{
 m non-}e\bar{e}] \sigma_{
 m lo-cs}[e^+e^- \to J/\psi + gg] = 0.07 \pm 0.13~{
 m pb}$
 - * Leaves little room for a color-octet contribution $e^+e^- \rightarrow J/\psi + g$, [Braaten, Chen'96]
 - $-\sigma[J/\psi+g]=0.28$ pb [LO by Wang'03]; can be enhanced by NLO corrections with a K factor of 1.8 [Zhang, Ma, Wang, Chao, PRD81]
 - * Based on standard estimates of CO MEs, which may be too large
 - * Large CO contribution is bad for understanding the large ratio $R_{c\bar{c}}$
 - Kinematically, the CO contribution in the p_{ψ} spectrum will peak near the end-point (z = 1)
 - * No evidence was found in Belle and BaBar data
 - * But the CO spectrum near end-point can be smeared by soft-gluon-resummation and shape-function effects [Fleming, Leibovich'03]

1.2. $e^+e^- \rightarrow J/\psi c\bar{c}$ (see talk of Wang for details)

 α_s corrections [Zhang, Chao'07; Gong, Wang'09]

- Large *K* factor
 - Direct K factor from NLO/LO is 1.8
 - Indirect K factor of about 1.8: NLO determination of MEs from $J/\psi \rightarrow e^+e^-$
- $\sigma[e^+e^- \to J/\psi + c\bar{c} + X] = 0.71^{+0.94}_{-0.31}(0.53^{+0.59}_{-0.23})$ pb for $\mu = 2.8(5.3)$ GeV
 - Including QED corrections, two-photon processes and feeddown from $\psi(2S)$ and χ_c
 - The uncertainties come from $m_c = 1.4 \mp 0.2 \text{ GeV}$
 - May resolve the discrepancy between theory and experiment
- Hidden uncertainty from nonperturbative region
 - There could be nonperturbative enhancement when one charm quark is co-moving with the J/ψ [Nayak, Qiu, Sterman'07]
 - Its size can be determined experimentally

1.3.
$$e^+e^- \to J/\psi gg$$

 \Leftrightarrow α_s corrections [Ma, Zhang, Chao, PRL'09]

- Small K factor of 1.2-1.5
 - Cross checked by [Gong, Wang PRL'09]
- μ dependent of $\sigma(J/\psi gg)$ and $R_{c\bar{c}}$

- The blue regions show the error bars of data
- Consistent with data both in absolute and relative rates

Virtual correction diagrams for $e^-e^+ o J/\psi gg$.

Real correction diagrams for $e^-e^+ o J/\psi gg$.

\$

Cross section

	$\mu = 2.8$	$\mu = 3.0$	$\mu = 5.3$	$\mu = 5.3$	
	$m_c = 1.4$	$m_c = 1.5$	$m_c = 1.4$	$m_c = 1.5$	
$\alpha_s(\mu)$	0.267	0.259	0.211	0.211	
$\sigma^{\mathrm{LO}}(gg)$	0.42	0.32	0.26	0.22	
$\sigma^{ m NLO}(gg)$	0.50	0.40	0.39	0.32	
$\sigma_{ ext{prompt}}^{ ext{NLO}}(gg)$	0.67	0.54	0.53	0.44	
$\sigma^{ m LO}(car c)$	0.27	0.18	0.17	0.12	
$\sigma^{ m NLO}(car{c})$	0.47	0.33	0.34	0.24	
$\sigma_{ m prompt}^{ m NLO}(car{c})$	0.71	0.51	0.53	0.39	
$R_{c\bar{c}}^{LO}$	0.39	0.36	0.40	0.35	
$R_{c\bar{c}}^{NLO}$	0.51	0.49	0.50	0.47	

• Experimental data [Belle'09]

$$-\sigma[e^+e^- \to J/\psi + c\bar{c} + X] = 0.74 \pm 0.08^{+0.09}_{-0.08} \text{ pb}$$

–
$$\sigma[e^+e^- \to J/\psi + X_{{
m non-}car{c}}] = 0.43 \pm 0.09 \pm 0.09~{
m pb}$$

• Consistent with data both absolute and relative rates

• Leave very little room for CO contribution

- The upper limits for CO EMs could be given after NLO CO calculation

$> P_{\psi}$ spectrum

- Upper: NLO+LL (solid), NLO (dotted), LO+LL (short-dashed), LO (long-dashed)
- Lower [Belle'09]: dashed curve for $d\sigma(J/\psi X_{\mathbf{non}\text{-}c\bar{c}})/dP_{\psi}$ in unit of fb/0.5GeV
- The LL resummation at the end point has little effect
- Consistent with the experimental spectrum

Relativistic corrections

- ullet v^2 corrections can be neglected for $\sigma[J/\psi+car{c}]$ [He, Fan, Chao'07]
- v^2 corrections to $\sigma[J/\psi + gg]$ [He, Fan, Chao'09; Jia'09]:
 - Fit experiment data at the NLO in α_s , with $m_c = 1.5$ GeV and $\alpha_s = 0.26$, we get

$$\frac{\langle 0|\mathcal{O}_1^{\psi}(^3S_1)|0\rangle}{3} = 0.572 \text{GeV}^3, \ \frac{\langle 0|\mathcal{P}_1^{\psi}(^3S_1)|0\rangle}{3m_c^2} = 0.512 \times 10^{-1} \text{GeV}^3.$$

- The relativistic correction enhances the cross section by 20 30%.
- CS contribution has saturated the observed $e^+e^- \to J/\psi + X_{\text{non-}c\bar{c}}$ cross section, CO contributions are further restricted.

1.4.
$$e^+e^- o J/\psi({}^3P_J^{8},{}^1S_0^{8}) + g$$

- Large K factor
 - The K factor of $e^+e^- \rightarrow c\bar{c}(^3P_{\bar{J}}^8or^1S_0^8) + g$ is about 1.9
 - The CO matrix elements should be even smaller.

- The peak at the endpoint in the J/ψ energy distribution can be smeared by NLO corrections.
 - But the major CO contribution still comes from the large energy region of J/ψ .

- The most stringent constraint of CO matrix elements
 - Setting the color-singlet contribution to be zero in $e^+e^- \rightarrow J/\psi + X_{non-c\bar{c}}$
 - An upper limit of the color-octet matrix element is: $\langle 0|\mathcal{O}^{J/\psi}[^1S_0^{(8)}]|0\rangle + 4.0 \, \langle 0|\mathcal{O}^{J/\psi}[^3P_0^{(8)}]|0\rangle/m_c^2 < (2.0 \pm 0.6) \times 10^{-2} \, \mathrm{GeV}^3$
 - This upper limit is smaller than the values extracted before by about a factor of 2.

2 Exclusive Double-Charmonia $J/\psi + \chi_{cJ}$ Production

2.1. Introduction

Experimental data v.s. NRQCD at LO in α_s and v

	$J/\psi + \eta_c$	$J/\psi + \chi_{c0}$	$J/\psi + \eta_c(2S)$
$\sigma imes B_{>2}$ (fb) (Belle)	$25.6 \pm 2.8 \pm 3.4$	$6.4 \pm 1.7 \pm 1.0$	$16.5 \pm 3.0 \pm 2.4$
$\sigma imes B_{>2}$ (fb) (BABAR)	$17.6 \pm 2.8^{+1.5}_{-2.1}$	$10.3 \pm 2.5^{+1.4}_{-1.8}$	$16.4 \pm 3.7^{+2.4}_{-3.0}$
σ (fb) (Liu, He, Chao)	5.5	6.9	3.7
σ (fb) (Braaten, Lee)	3.78 ± 1.26	2.40 ± 1.02	1.57 ± 0.52

- * The two LO NRQCD results employ different choices of m_c , NRQCD MEs and α_s
- The LO results are much smaller than data. The NLO corrections in α_s [Zhang, Gao, Chao'06; Gong, Wang'08] and v [Bodwin et al.'07; He et al.'07] might bring theory into agreement with data for $J/\psi\eta_c$

\lessgtr Factorization for exclusive charmonium production in e^+e^- annihilation and B decay

$$p_c$$
 $p_{\bar{c}}$
 $p_{\bar{c}}$
 $p_{\bar{c}}$
 $p_{\bar{c}}$

• Two large scale:
$$m_c$$
 and $\sqrt{s}(m_b)$ $\sim \frac{p_c^{\mu}}{p_c \cdot k} \operatorname{Tr}_c(T^a T^b) - \frac{p_{\bar{c}}^{\mu}}{p_{\bar{c}} \cdot k} \operatorname{Tr}_c(T^b T^a)$ $\sim \frac{p^{\mu}}{p \cdot k} \operatorname{Tr}_c(T^a T^b - T^b T^a)$ $+ \frac{2}{(p \cdot k)^2} (q^{\mu}(p \cdot k) - p^{\mu}(q \cdot k)) \operatorname{Tr}_c(T^a T^b + T^b T^a)$ $\sim p^{\mu} q^{\nu} F_{\mu\nu}^a \operatorname{Tr}_c(T^a T^b) \sim \vec{x} \cdot \vec{E}^a \operatorname{Tr}_c(T^a T^b),$

-
$$p_c = p/2 + q$$
; $p_{\bar{c}} = p/2 - q$

- Factorization is OK for S-wave at LO in $v: e^+e^- \to J/\psi \eta_c; B \to J/\psi (\eta_c) K$
- Factorization is not OK for P-wave: $e^+e^- \to h_c\chi_c$; $B \to \chi_c(h_c)K$
 - B decay to P-wave at one-loop level [Song, Meng, Gao, Chao'03]
- Factorization can be restored in the case $mv^2 \gg \Lambda_{QCD}$ [Beneke, Vernazza'08]
- Factorization should be OK in the limit $m_c^2/s, m_c/m_b \rightarrow 0$

$$-p_c = up + O(m_c/\sqrt{s}), \ p_{\bar{c}} = \bar{u}p + O(m_c/\sqrt{s}); \ u + \bar{u} = 1, \ u = 1/2 + O(v, m_c/\sqrt{s})$$

-
$$soft = O(m_c/\sqrt{s} \cdot m_c/\sqrt{s}), O(m_c/m_b)$$

- Be verified by more general analysis [Bodwin, Tormo, Lee'08]
- Be indicated by B decay to P-wave at one-loop [Song, Meng, Gao, Chao'03]

Factorization is OK for $e^+e^- \to J/\psi \chi_c$, but not for $e^+e^- \to h_c \chi_c$ [Zhang, Ma, Chao, PRD'08]

- p_1 for J/ψ , p_2 for χ_c
- Soft gluon lines decouple to the hard kernel
- Soft interactions are canceled between (a) and (b)

2.2. $e^+e^- \to J/\psi \chi_{cJ}$

 \diamond α_s Corrections [Wang, Ma, Chao, to appear]

• Direct K factor

	$J/\psi + \chi_{c0}$	$J/\psi + \chi_{c1}$	$J/\psi + \chi_{c2}$
$\mu = 2m_c$	1.57	0.91	0.78
$\mu = \sqrt{s/2}$	1.79	1.25	1.14

- Differences of K factors between $\chi_{cJ}(J=0,1,2)$ are in line with exp. data

• μ and m_c dependence

-
$$m_c = 1.5 \text{ GeV (upper)}; \quad \mu = 2m_c \text{ (lower)}$$

Numerical results [Wang, Ma, Chao, to appear]

• The MEs are determined by $J/\psi \to e^+e^-$, $\chi_{c2} \to \gamma\gamma$ data

	Belle $\sigma \times \mathcal{B}_{>2(0)}[3]$	BaBar $\sigma \times \mathcal{B}_{>2}[4]$	Our result $(\mu = 2m_c)$	Our result $(\mu = \sqrt{s/2})$
$\sigma(J/\psi + \chi_{c0})$	$6.4 \pm 1.7 \pm 1.0$	$10.3 \pm 2.5^{+1.4}_{-1.8}$	9.5 ± 1.2	7.2 ± 1.2
$\sigma(J/\psi + \chi_{c1})$	-	-	$0.93^{+0.04}_{-0.07}$	$0.84^{+0.07}_{-0.09}$
$\sigma(J/\psi + \chi_{c2})$	-	-	$1.15^{+0.05}_{-0.08}$	$1.11^{+0.05}_{-0.07}$
$\sigma(J/\psi + \chi_{c1}) + \sigma(J/\psi + \chi_{c2})$	${<}5.3$ at 90% CL	-	$2.08^{+0.08}_{-0.14}$	$1.96^{+0.11}_{-0.17}$
$\sigma(\psi(2S) + \chi_{c0})$	$12.5 \pm 3.8 \pm 3.1$	-	4.1 ± 0.5	3.1 ± 0.5
$\sigma(\psi(2S) + \chi_{c1})$	-	-	$0.40^{+0.01}_{-0.03}$	$0.36^{+0.03}_{-0.04}$
$\sigma(\psi(2S) + \chi_{c2})$	-	-	$0.49^{+0.02}_{-0.03}$	$0.48^{+0.02}_{-0.04}$
$\sigma(\psi(2S) + \chi_{c1}) + \sigma(\psi(2S) + \chi_{c2})$	< 8.6 at $90%$ CL	-	$0.89^{+0.04}_{-0.06}$	$0.84^{+0.05}_{-0.07}$

- [3] Belle, PRD'04; [4] BaBar, PRD'05
- The error bar come from $m_c=1.5\pm0.1~{\rm GeV}$

The fully analytical results are also given

3 Summary

- NLO QCD radiative corrections to CS contributions are very important
 - Quarkonium production at Tevatron (up to NNLO*)
 - J/ψ production at RHIC
 - Inelatic J/ψ photoproduction at HERA
 - Exclusive double-charmonium production at Belle and BaBar
 - Inclusive J/ψ production at Belle and BaBar
- In many cases, CO contributions are overestimated before these NLO results are taken into account
- Consistent with Lattice estimation of the CO decay MEs

• Resolved puzzles (might be)

$$-e^+e^- \rightarrow J/\psi \chi_{cJ}$$

–
$$e^+e^- \rightarrow J/\psi c\bar{c}$$
 and $R_{c\bar{c}}$

- Remaining puzzles:
 - Polarizations at Tevatron and in inelastic J/ψ photoproduction at HERA, as well as the cross sections?
 - The size of CO contributions for J/ψ : very small?
- Looking forward to higher luminosity, higher statistics and higher p_T : LHC (CMS, LHCb,...); SuperB, ...,and better theoretical approaches (higher order corrections should be under control).

Thanks!